Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542338

RESUMO

Claudins are one of the major components of tight junctions (TJs) that polymerize within the cell membrane and form interactions between cells. Some claudins seal the paracellular space, limiting paracellular flux, while others form selectively permeable ion channels that control the paracellular permeability of small ions. Claudin strands are known to be dynamic and reshape within TJs to accommodate large-scale movements and rearrangements of epithelial tissues. Here, we summarize the recent computational and modeling studies on claudin assembly into tetrameric ion channels and their polymerization into µm long strands within the membrane. Computational studies ranging from all-atom molecular dynamics, coarse-grained simulations, and hybrid-resolution simulations elucidate the molecular nature of claudin assembly and function and provide a framework that describes the lateral flexibility of claudin strands.


Assuntos
Claudinas , Junções Íntimas , Claudinas/metabolismo , Junções Íntimas/metabolismo , Canais Iônicos/metabolismo , Simulação de Dinâmica Molecular , Epitélio/metabolismo , Claudina-3/metabolismo
2.
Bull Exp Biol Med ; 176(4): 442-446, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38488962

RESUMO

We performed a comparative study of the effects of X-ray irradiation and bleomycin on the mRNA levels of E-cadherin and tight junction proteins (claudin-3, claudin-4, claudin-18, ZO-2, and occludin) in an alveolar epithelial cell line L2. Irradiation decreased claudin-4 levels and increased occludin levels, while the levels of other mRNAs remained unchanged. Bleomycin increased the expression levels of all proteins examined except claudin-3. Irradiation and bleomycin have different effects on the expression level of intercellular junction proteins, indicating different reactions triggered in alveolar epithelial cells and a great prospects of further comparative studies.


Assuntos
Células Epiteliais Alveolares , Junções Íntimas , Células Epiteliais Alveolares/metabolismo , Junções Íntimas/metabolismo , Ocludina/genética , Ocludina/metabolismo , Claudina-4/metabolismo , Claudina-3/metabolismo , Bleomicina/farmacologia , Bleomicina/metabolismo , Junções Intercelulares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Células Epiteliais
3.
J Ethnopharmacol ; 328: 117998, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38484956

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: According to ancient literature, Prunella vulgaris L. (P vulgaris) alleviates mastitis and has been used in China for many years; however, there are no relevant reports that confirm this or the mechanism of its efficacy. AIM OF THE STUDY: To explore the anti-acute mastitis effect and potential mechanism of P vulgaris extract. MATERIALS AND METHODS: First, the active ingredients and targets of P vulgaris against mastitis were predicted using network pharmacology. Next, the relevant active ingredients were enriched using macroporous resins and verified using UV and UPLC-Q-TOF-MS/MS. Lastly, a mouse model of acute mastitis was established by injecting lipopolysaccharides into the mammary gland and administering P vulgaris extract by oral gavage. The pathological changes in mammary tissue were observed by HE staining. Serum and tissue inflammatory factors were measured by ELISA method. MPO activity in mammary tissue was measured using colorimetry and MPO expression was detected by immunohistochemistry. The expression of tight junction proteins (ZO-1, claudin-3, and occludin) in mammary tissue was detected by immunofluorescence and Western blot. iNOS and COX-2 in mammary tissue were detected by Western blot. MAPK pathway and NF-κB pathway related proteins were also detected by Western blot. RESULTS: Network pharmacology predicted that phenolic acids and flavonoids in P vulgaris had anti-mastitis effects. The contents of total flavonoids and total phenolic acids in P vulgaris extract were 64.5% and 29.4%, respectively. UPLC-Q-TOF-MS/MS confirmed that P vulgaris extract contained phenolic acids and flavonoids. The results of animal experiments showed that P vulgaris extract reduced lipopolysaccharide-induced inflammatory edema, inflammatory cell infiltration, and interstitial congestion of mammary tissue. It also reduced the levels of serum and tissue inflammatory factors TNF-α, IL-6, and IL-1ß, and inhibited the activation of MPO. Furthermore, it downregulated the expression of MAPK and NF-κB pathway-related proteins. The expressions of ZO-1, occludin, and claudin-3 in mammary gland tissues were upregulated. CONCLUSIONS: P vulgaris extract can maintain the integrity of mammary connective tissue and reduce its inflammatory response to prevent acute mastitis. Its mechanism probably involves regulating NF-κB and MAPK pathways.


Assuntos
Mastite , Prunella , Humanos , Animais , Feminino , Camundongos , NF-kappa B/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Transdução de Sinais , Leite/metabolismo , Ocludina/metabolismo , Claudina-3/metabolismo , Espectrometria de Massas em Tandem , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mastite/induzido quimicamente , Mastite/tratamento farmacológico , Mastite/metabolismo , Flavonoides/farmacologia
4.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338705

RESUMO

This study investigates the intricate composition and spatial distribution of tight junction complex proteins during early mouse neurulation. The analyses focused on the cranial neural tube, which gives rise to all head structures. Neurulation brings about significant changes in the neuronal and non-neuronal ectoderm at a cellular and tissue level. During this process, precise coordination of both epithelial integrity and epithelial dynamics is essential for accurate tissue morphogenesis. Tight junctions are pivotal for epithelial integrity, yet their complex composition in this context remains poorly understood. Our examination of various tight junction proteins in the forebrain region of mouse embryos revealed distinct patterns in the neuronal and non-neuronal ectoderm, as well as mesoderm-derived mesenchymal cells. While claudin-4 exhibited exclusive expression in the non-neuronal ectoderm, we demonstrated a neuronal ectoderm specific localization for claudin-12 in the developing cranial neural tube. Claudin-5 was uniquely present in mesenchymal cells. Regarding the subcellular localization, canonical tight junction localization in the apical junctions was predominant for most tight junction complex proteins. ZO-1 (zona occludens protein-1), claudin-1, claudin-4, claudin-12, and occludin were detected at the apical junction. However, claudin-1 and occludin also appeared in basolateral domains. Intriguingly, claudin-3 displayed a non-canonical localization, overlapping with a nuclear lamina marker. These findings highlight the diverse tissue and subcellular distribution of tight junction proteins and emphasize the need for their precise regulation during the dynamic processes of forebrain development. The study can thereby contribute to a better understanding of the role of tight junction complex proteins in forebrain development.


Assuntos
Proteínas de Junções Íntimas , Junções Íntimas , Camundongos , Animais , Proteínas de Junções Íntimas/metabolismo , Claudina-4/metabolismo , Claudina-1/metabolismo , Ocludina/metabolismo , Claudina-3/metabolismo , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Claudinas/metabolismo
5.
Laryngoscope ; 134(2): 552-561, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37345652

RESUMO

OBJECTIVES: As a critical component of the epithelial barrier, tight junctions (TJs) are essential in nasal mucosa against pathogen invasion. However, the function of TJs has rarely been reported in nasal inverted papilloma (NIP). This study aims to investigate the potential factors of TJs' abnormality in NIP. METHODS: We assessed the expression of ZO-1, occludin, claudin-1, claudin-3, and claudin-7 in healthy controls and NIP by real-time quantitative polymerase chain reaction and immunofluorescent staining. The correlation between TJs expression and neutrophil count, TH 1/TH 2/TH 17 and regulatory T cell biomarkers, and the proportion of nasal epithelial cells was investigated. RESULTS: Upregulation of ZO-1, occludin, claudin-1, and claudin-7, along with downregulation of claudin-3, was found in NIP compared to control (all p < 0.05). An abnormal proportion with a lower number of ciliated cells (control vs. NIP: 37.60 vs. 8.67) and goblet cells (12.52 vs. 0.33) together with a higher number of basal cells (45.58 vs. 124.00) in NIP. Meanwhile, claudin-3 was positively correlated with ciliated and goblet cells (all p < 0.01). Additionally, neutrophils were excessively infiltrated in NIP, negatively correlated with ZO-1, but positively with claudin-3 (all p < 0.05). Furthermore, FOXP3, IL-10, TGF-ß1, IL-5, IL-13, and IL-22 levels were induced in NIP (all p < 0.01). Occludin level was negatively correlated with IL-10, IL-5, IL-13, and IL-22, whereas ZO-1 was positively with TGF-ß1 (all p < 0.05). CONCLUSION: Nasal epithelial barrier dysfunction with TJs anomalies is commonly associated with abnormal proliferation and differentiation of epithelial cells and imbalance of immune and inflammatory patterns in NIP. LEVEL OF EVIDENCE: NA Laryngoscope, 134:552-561, 2024.


Assuntos
Papiloma Invertido , Junções Íntimas , Humanos , Interleucina-10/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Ocludina/metabolismo , Interleucina-13/metabolismo , Claudina-1/metabolismo , Claudina-3/genética , Claudina-3/metabolismo , Interleucina-5/metabolismo , Células Epiteliais/metabolismo
6.
Radiat Res ; 201(1): 77-86, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38044712

RESUMO

Inflammatory response is one of the essential parts of various pathogenic mechanisms of radiation-induced salivary dysfunction. The effect of decreasing the levels of inflammatory cytokines on alleviating submandibular gland injuries after irradiation is unclear. This study aimed to explore the effect of the antibody against tumor necrosis factor-alpha, infliximab, on radiation-induced submandibular gland dysfunction in rats. Male Wistar rats received a single 20 Gy dose to the right submandibular gland region or sham irradiated. Meanwhile, the irradiated group was divided into infliximab treatment groups or untreated groups. Animals were euthanized at 1, 6, and 12 weeks postirradiation, and the irradiated submandibular gland was dissected for subsequent detection. Submandibular gland exposure caused obvious pathological changes. The increased levels of inflammatory cytokines, including tumor necrosis factor-alpha, interleukin-1ß, and interleukin-6, represent an aggravated inflammatory response. The results of the western blot, reverse transcription-quantitative polymerase chain reaction, and immunofluorescence staining showed upregulated levels of claudin-1, claudin-3, and aquaporin 5 and downregulated levels of claudin-4. Moreover, nuclear factor kappa-B phosphorylation levels were also up-regulated. In subsequent experiments, we found that infliximab alleviated inflammatory response, up-regulated tumor necrosis factor-alpha, interleukin-1ß, and interleukin-6 levels, and improved claudin-1, claudin-3, claudin-4, and aquaporin 5 expression. Our results indicate that infliximab might improve the para-cellular pathway and trans-cellular pathway destruction by reducing the inflammatory.


Assuntos
Glândula Submandibular , Fator de Necrose Tumoral alfa , Ratos , Masculino , Animais , Ratos Wistar , Infliximab/farmacologia , Infliximab/uso terapêutico , Infliximab/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Glândula Submandibular/metabolismo , Glândula Submandibular/patologia , Aquaporina 5/metabolismo , Claudina-3/metabolismo , Claudina-1/metabolismo , Claudina-4/metabolismo , Interleucina-1beta , Interleucina-6
7.
Dev Biol ; 507: 20-33, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38154769

RESUMO

The neural tube, the embryonic precursor to the brain and spinal cord, begins as a flat sheet of epithelial cells, divided into non-neural and neural ectoderm. Proper neural tube closure requires that the edges of the neural ectoderm, the neural folds, to elevate upwards and fuse along the dorsal midline of the embryo. We have previously shown that members of the claudin protein family are required for the early phases of chick neural tube closure. Claudins are transmembrane proteins, localized in apical tight junctions within epithelial cells where they are essential for regulation of paracellular permeability, strongly involved in apical-basal polarity, cell-cell adhesion, and bridging the tight junction to cytoplasmic proteins. Here we explored the role of Claudin-3 (Cldn3), which is specifically expressed in the non-neural ectoderm. We discovered that depletion of Cldn3 causes folic acid-insensitive primarily spinal neural tube defects due to a failure in neural fold fusion. Apical cell surface morphology of Cldn3-depleted non-neural ectodermal cells exhibited increased membrane blebbing and smaller apical surfaces. Although apical-basal polarity was retained, we observed altered Par3 and Pals1 protein localization patterns within the apical domain of the non-neural ectodermal cells in Cldn3-depleted embryos. Furthermore, F-actin signal was reduced at apical junctions. Our data presents a model of spina bifida, and the role that Cldn3 is playing in regulating essential apical cell processes in the non-neural ectoderm required for neural fold fusion.


Assuntos
Ectoderma , Crista Neural , Embrião de Galinha , Animais , Ectoderma/metabolismo , Crista Neural/metabolismo , Galinhas/metabolismo , Claudina-3/metabolismo , Tubo Neural , Claudinas/genética , Claudinas/metabolismo , Junções Íntimas/metabolismo
8.
J Nutr ; 153(12): 3360-3372, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37806357

RESUMO

BACKGROUND: Claudins (CLDNs), major components of tight junctions, control paracellular permeabilities of mineral ions and wastes. The absorption of nutrients including glucose and amino acids (AAs) is regulated by intestinal epithelial cells. However, the role of CLDNs is not fully understood. OBJECTIVES: The purpose of this study was to clarify the effect of AA deprivation on the expression of AA transporters and CLDNs, as well as the role of CLDNs in the regulation of paracellular AA fluxes. METHODS: The messenger RNA and protein expression of various CLDNs were examined by real-time quantitative polymerase chain reaction and Western blot analyses, respectively. The AA selectivity of CLDNs was estimated using liquid chromatography-tandem mass spectrometry (LC-MS) analysis. RESULTS: The expression levels of some AA transporters, CLDN4, and CLDN15 were increased by AA deprivation in normal mouse colon-derived MCE301 cells. The expression of AA transporters and CLDN15 in the mouse colon was positively correlated with aging but the expression of CLDN4 was not. The AA deprivation-induced elevation of CLDN4 expression was inhibited by MHY1485, a mammalian target of rapamycin (mTOR) activator. Furthermore, CLDN4 expression was increased by rapamycin, an mTOR inhibitor. mTOR may be involved in the transcriptional activation of CLDN4. The fluxes of AAs from the basal to apical compartments were decreased and increased by CLDN4 overexpression and silencing, respectively. LC-MS analysis showed that the fluxes of all AAs, especially Lys, His, and Arg, were enhanced by CLDN4 silencing. CONCLUSIONS: CLDN4 is suggested to form a paracellular barrier to AAs, especially alkaline AAs, which is attenuated with aging.


Assuntos
Aminoácidos , Claudinas , Animais , Camundongos , Aminoácidos/metabolismo , Claudina-3/genética , Claudina-3/metabolismo , Claudina-4/genética , Claudina-4/metabolismo , Claudinas/genética , Claudinas/metabolismo , Mamíferos/metabolismo , Junções Íntimas , Serina-Treonina Quinases TOR/metabolismo
9.
Ecotoxicol Environ Saf ; 264: 115404, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37625335

RESUMO

Radiation therapy and unwanted radiological or nuclear exposure, such as nuclear plant accidents, terrorist attacks, and military conflicts, pose serious health issues to humans. Dysfunction of the intestinal epithelial barrier and the leakage of luminal antigens and bacteria across the barrier have been linked to various human diseases. Intestinal permeability is regulated by intercellular structures, termed tight junctions (TJs), which are disrupted after radiation exposure. In this study, we investigated radiation-induced alterations in TJ-related proteins in an intestinal epithelial cell model. Caco-2 cells were irradiated with 2, 5, and 10 Gy and harvested 1 and 24 h after X-ray exposure. The trypan blue assay revealed that cell viability was reduced in a dose-dependent manner 24 h after X-ray exposure compared to that of non-irradiated cells. However, the WST-8 assay revealed that cell proliferation was significantly reduced only 24 h after radiation exposure to 10 Gy compared to that of non-irradiated cells. In addition, a decreased growth rate and increased doubling time were observed in cells irradiated with X-rays. Intestinal permeability was significantly increased, and transepithelial electrical resistance values were remarkably reduced in Caco-2 cell monolayers irradiated with X-rays compared to non-irradiated cells. X-ray irradiation significantly decreased the mRNA and protein levels of ZO-1, occludin, claudin-3, and claudin-4, with ZO-1 and claudin-3 protein levels decreasing in a dose-dependent manner. Overall, the present study reveals that exposure to X-ray induces dysfunction of the human epithelial intestinal barrier and integrity via the downregulation of TJ-related genes, which may be a key factor contributing to intestinal barrier damage and increased intestinal permeability.


Assuntos
Enteropatias , Mucosa Intestinal , Humanos , Células CACO-2 , Mucosa Intestinal/metabolismo , Raios X , Claudina-3/genética , Claudina-3/metabolismo , Intestinos , Células Epiteliais/metabolismo , Enteropatias/metabolismo , Permeabilidade
10.
Med Oncol ; 40(9): 268, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37578554

RESUMO

Glioblastoma multiforme (GBM) is a significantly malignant and lethal brain tumor with an average survival time of less than 12 months. Several researches had shown that Claudin-3 (CLDN3) is overexpressed in various cancers and might be important in their growth and spread. In this study, we used qRT-PCR, western blotting, immunohistochemistry, and immunofluorescence staining assays to investigate the expression levels of various proteins. To explore the proliferation abilities of GBM cells, we conducted the CCK-8 and EdU-DNA formation assays. Wound healing and transwell assays were used to investigate the capacities of invasion and migration of GBM cells. Additionally, we constructed an intracranial xenograft model of GBM to study the in vivo role of CLDN3. Our study devoted to investigate the function of CLDN3 in the pathogenesis and progression of GBM. Our study revealed that CLDN3 was upregulated in GBM and could stimulate tumor cell growth and epithelial-mesenchymal transition (EMT) in both laboratory and animal models. We also discovered that CLDN3 expression could be triggered by transforming growth factor-ß (TGF-ß) and reduced by specific inhibitors of the TGF-ß signaling pathway, such as ITD-1. Further analysis revealed that increased CLDN3 levels enhanced TGF-ß-induced growth and EMT in GBM cells, while reducing CLDN3 levels weakened these effects. Our study demonstrated the function of CLDN3 in facilitating GBM growth and metastasis and indicated its involvement in the tumorigenic effects of TGF-ß. Developing specific inhibitors of CLDN3 might, therefore, represent a promising new approach for treating this devastating disease.


Assuntos
Neoplasias Encefálicas , Claudina-3 , Glioblastoma , Animais , Humanos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Claudina-3/genética , Claudina-3/metabolismo , Transição Epitelial-Mesenquimal , Glioblastoma/genética , Fator de Crescimento Transformador beta
11.
Chem Biodivers ; 20(6): e202300572, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37218365

RESUMO

This study aims to explore the protective effects of Picroside III, an active ingredient of Picrorhiza scrophulariiflora, on the intestinal epithelial barrier in tumor necrosis factor-α (TNF-α) induced Caco-2 cells and dextran sulfate sodium (DSS) induced colitis in mice. Results show that Picroside III significantly alleviated clinical signs of colitis including body weight loss, disease activity index increase, colon shortening, and colon tissue damage. It also increased claudin-3, ZO-1 and occludin expressions and decreased claudin-2 expression in the colon tissues of mice with colitis. In vitro, Picroside III also significantly promoted wound healing, decreased the permeability of cell monolayer, upregulated the expressions of claudin-3, ZO-1 and occludin and downregulated the expression of claudin-2 in TNF-α treated Caco-2 cells. Mechanism studies show that Picroside III significantly promoted AMP-activated protein kinase (AMPK) phosphorylation in vitro and in vivo, and blockade with AMPK could significantly attenuate the upregulation of Picroside III in ZO-1 and occludin expressions and the downregulation of claudin-2 expression in TNF-α treated Caco-2 cells. In conclusion, this study demonstrates that Picroside III attenuated DSS-induced colitis by promoting colonic mucosal wound healing and epithelial barrier function recovery via the activation of AMPK.


Assuntos
Colite , Picrorhiza , Humanos , Camundongos , Animais , Picrorhiza/metabolismo , Células CACO-2 , Claudina-2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ocludina/metabolismo , Ocludina/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Claudina-3/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Mucosa Intestinal , Modelos Animais de Doenças
12.
Ann N Y Acad Sci ; 1523(1): 51-61, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37002535

RESUMO

Hair follicles (HFs) undergo cyclic phases of growth, regression, and rest in association with hair shafts to maintain the hair coat. Nonsense mutations in the tight junction protein claudin (CLDN)-1 cause hair loss in humans. Therefore, we evaluated the roles of CLDNs in hair retention. Among the 27 CLDN family members, CLDN1, CLDN3, CLDN4, CLDN6, and CLDN7 were expressed in the inner bulge layer, isthmus, and sebaceous gland of murine HFs. Hair phenotypes were observed in Cldn1 weaker knockdown and Cldn3-knockout (Cldn1Δ/Δ Cldn3-/- ) mice. Although hair growth was normal, Cldn1Δ/Δ Cldn3-/- mice showed striking hair loss in the first telogen. Simultaneous deficiencies in CLDN1 and CLDN3 caused abnormalities in telogen HFs, such as an aberrantly layered architecture of epithelial cell sheets in bulges with multiple cell layers, mislocalization of bulges adjacent to sebaceous glands, and dilated hair canals. Along with the telogen HF abnormalities, which shortened the hair retention period, there was an enhanced proliferation of the epithelium surrounding HFs in Cldn1Δ/Δ Cldn3-/- mice, causing accelerated hair regrowth in adults. Our findings suggested that CLDN1 and CLDN3 may regulate hair retention in infant mice by maintaining the appropriate layered architecture of HFs, a deficiency of which can lead to alopecia.


Assuntos
Alopecia , Animais , Camundongos , Alopecia/genética , Claudina-1/genética , Claudina-1/metabolismo , Claudina-3/genética , Claudina-3/metabolismo , Claudina-4/metabolismo , Mutação , Envelhecimento
13.
Toxicol Lett ; 375: 8-20, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36596350

RESUMO

The role of peroxisome proliferator activated receptor gamma (PPARγ) in the regulation of adipocyte differentiation has been well characterized. Besides adipose tissue, PPARγ is also highly expressed in the intestine. However, the functional role of PPARγ in the regulation of intestinal function still remains poorly understood. In the present study, we sought to understand the role of PPARγ activation on regulation of intestinal barrier function in intestinal porcine epithelial cells (IPEC-J2) and weaned piglets exposed to the mycotoxin, deoxynivalenol (DON). PPARγ activation by rosiglitazone and troglitazone, two pharmacological PPARγ ligands, increased the protein expression of tight junction proteins (TJP), claudin-3 and 4. PPARγ inhibition increased endocytosis of claudin-4 which was reversed by its activation with troglitazone. DON exposure decreased the protein expression of TJP, and also significantly suppressed PPARγ transcriptional activity. Interestingly, PPARγ activation reversed the reduction of claudin-3 and 4 caused by DON in vitro and in vivo. PPARγ activation also partially restored the transepithelial electrical resistance (TEER) and reduced the permeability of fluorescein isothiocyanate-dextran (FITC-dextran) that have been negatively impacted by DON. These effects were lost in the presence of a specific PPARγ antagonist or in PPARγ knockout cells, confirming the importance of PPARγ in the regulation of intestinal barrier function and integrity. Likewise, in weaned pigs exposed to DON, the PPARγ agonist pioglitazone mitigated the impaired villus-crypt morphology caused by DON. Therefore, pharmacological and natural bioactive compounds with PPARγ stimulatory activities could be effective in preventing DON-induced gut barrier dysfunction.


Assuntos
Enteropatias , PPAR gama , Suínos , Animais , PPAR gama/genética , PPAR gama/metabolismo , Claudina-4/genética , Claudina-4/metabolismo , Claudina-3/metabolismo , Troglitazona/farmacologia , Junções Íntimas , Células Epiteliais , Mucosa Intestinal/metabolismo , Proteínas de Junções Íntimas/metabolismo , Endocitose
14.
Sci Total Environ ; 857(Pt 2): 159561, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36265643

RESUMO

Inhalation of large amounts of arsenic can damage the respiratory tract and may exacerbate the development of bacterial pneumonia, but the exact mechanism remains unclear. In this study, male Wistar rats were randomly divided into control, arsenic trioxide (16.0 µg/kg ATO), lipopolysaccharide (0.5 mg/kg LPS), and ATO combined with LPS (16.0 µg/kg ATO + 0.5 mg/kg LPS) groups. Blood and lung tissue samples were collected from each group 12 h after exposure. The results showed that exposure to ATO or LPS alone produced different effects on leukocytes and inflammatory factors, while combined exposure significantly increased serum interleukin-6, interleukin-10, lung water content, lung lavage fluid protein, and p38 protein phosphorylation levels. Alveolar interstitial thickening, alveolar membrane edema, alveolar type I and II cell matrix vacuolization, and nuclear pyknosis were observed in rats exposed to either ATO or LPS. More severe ultrastructural changes were found in the combined exposure group, and chromatin splitting was observed in alveolar type I cells. Lanthanum nitrate particles leaked from the alveolar vascular lumen in the ATO-exposed group, whereas in the combined exposure group, Evans Blue levels were increased and lanthanum nitrate particles were present in the lung parenchyma. Claudin-3 protein expression increased and claudin-4 expression decreased after ATO or LPS exposure, while claudin-18 expression was unchanged. The changes in claudin-3 and claudin-4 protein expression were further exacerbated by combined exposure. In conclusion, these results suggest that inhalation of ATO may exacerbate the development of bacterial pneumonia and that common mechanisms may exist to synergistically disrupt epithelial barrier integrity.


Assuntos
Arsênio , Lesão Pulmonar , Ratos , Masculino , Animais , Lipopolissacarídeos/toxicidade , Lesão Pulmonar/induzido quimicamente , Arsênio/metabolismo , Claudina-4/metabolismo , Claudina-3/metabolismo , Ratos Wistar , Pulmão
15.
Vaccine ; 41(3): 756-765, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526500

RESUMO

Avian coccidiosis causes huge economic losses to the poultry industry worldwide and currently lacks effective live vector vaccines. Achieving efficient antigen delivery to mucosa-associated lymphoid tissue (MALT) is critical for improving the effectiveness of vaccines. Here, chicken claudin-3 (CLDN3), a tight junction protein expressed in MALT, was identified as a target, and the C-terminal region of Clostridium perfringens enterotoxin (C-CPE) was proven to bind to chicken CLDN3. Then, a CLDN3-targeting Lactobacillus plantarum NC8-expressing C-CPE surface display system (NC8/GFP-C-CPE) was constructed to successfully express the heterologous protein on the surface of L. plantarum. The colonization level of NC8/GFP-C-CPE was significantly increased compared to the non-targeting strain and could persist in the intestine for at least 72 h. An oral vaccine strain expressing five EGF domains of Eimeria tenella microneme protein 8 (EtMIC8-EGF) (NC8/EtMIC8-EGF-C-CPE) was constructed to evaluate the protective efficacy against E. tenella infection. The results revealed that CLDN3-targeting L. plantarum induced stronger mucosal immunity in gut-associated lymphoid tissues (GALT) as well as humoral responses and conferred better protection in terms of parasite replication and pathology than the non-targeting strain. Overall, we successfully constructed a CLDN3-targeting L. plantarum NC8 surface display system characterized by MALT-targeting, which is an efficient antigen delivery system to confer enhanced protective efficacy in chickens against E. tenella infection.


Assuntos
Claudina-3 , Coccidiose , Eimeria tenella , Doenças das Aves Domésticas , Vacinas Protozoárias , Animais , Galinhas , Claudina-3/imunologia , Claudina-3/metabolismo , Coccidiose/prevenção & controle , Coccidiose/veterinária , Fator de Crescimento Epidérmico/metabolismo , Lactobacillus plantarum/genética , Doenças das Aves Domésticas/imunologia
16.
Mech Ageing Dev ; 210: 111760, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36476344

RESUMO

The impairment of the intestinal epithelial barrier and subsequent bacterial translocation are common in aging individuals, contributory to several local and systematic disorders. However, the underlying mechanism of the age-related degeneration has not been fully understood. In this study, we demonstrated that the intestinal KIT signaling declined and de-activated with aging, parallel with epithelial barrier dysfunction. Endoplasmic reticulum stress (ERS)/unfolded protein response (UPR) was obviously increased during aging. The ERS and its downstream IRE1α were highly activated in the aging colonic epithelium. Furthermore, by the use of Tunicamycin (Tm)-induced ERS mouse and cell models, we uncovered that the activity of the ERS/IRE1α accelerated the protein degradation of KIT via ubiquitin-proteasome pathway. The deficiency of KIT signaling further reduced the transcription of the tight junction protein Claudin-3. Of significance, Artesunate (ART) could be capable of ameliorating the detrimental effect of ERS/IRE1α, indicated by the re-gained KIT and Claudin-3 expressions and the restoration of the intestinal epithelial barrier. In conclusion, our present study provided novel evidence elucidating the ERS/IRE1α-induced loss of KIT and Claudin-3 in the aging colonic epithelium and also shed light on the protective effect of Artesunate on the intestinal epithelial barrier by blocking ERS/IRE1α activity during aging.


Assuntos
Endorribonucleases , Proteínas Serina-Treonina Quinases , Camundongos , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Endorribonucleases/farmacologia , Artesunato/farmacologia , Estresse do Retículo Endoplasmático , Claudina-3/metabolismo , Resposta a Proteínas não Dobradas , Apoptose
17.
J Cancer Res Ther ; 18(6): 1771-1775, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36412442

RESUMO

Background: In this study, the role of claudins in cancer progression was explored among breast cancer-affected women. Methodology: Two cohorts (discovery and validated) of breast cancer-affected women were used. In discovery cohort, 90 freshly excised breast tumor tissues along with adjacent cancer free specimens were collected at the time of surgery. These specimens were processed for RNA isolation and complementary DNA synthesis. After designing primers for claudin 3, claudin 4, and claudin 7, these sequences were synthesized from Macrogen, Korea. Claudin expression in respective tumors and controls was assessed using quantitative reverse transcription polymerase chain reaction. Any probable correlation of these molecules with various clinicopathological parameters was explored. For validation, a publicly available dataset of 2088 breast cancer patients was accessed. Claudin expression of these patients was analyzed for given clinical parameters and compared with earlier findings of discovery cohort. Results: Discovery cohort comprised 17% luminal A, 63% luminal B, 8% human epidermal growth factor receptor 2 enrich, and 12% triple-negative breast cancer tumor. High claudin 3 expression was significantly correlated with tumor size >2 cm and menopausal status. Claudin 7 expression was upregulated among poorly differentiated tumor patients. Both claudins 3/4 showed significant correlation with tumor grade, stage, size, and metastasis. Claudin-low subtype was also found in 18% of the cohort. Conclusion: Claudins impart a significant role in cell differentiation and disease progression. Hence, claudin cluster can be ascertained as the disease biomarkers for breast cancer.


Assuntos
Claudinas , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Claudinas/genética , Claudinas/análise , Claudina-3/metabolismo , Imuno-Histoquímica , Biomarcadores Tumorais/metabolismo , Claudina-4/metabolismo , Progressão da Doença
18.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36233211

RESUMO

Psychological stress is associated with increased risk of gastrointestinal (GI) tract diseases. Evidence indicated that platelets facilitate GI tissue repair in intestinal anastomosis models. However, whether platelets are involved in native mechanism of the rescue of stress-induced GI injury for maintaining the GI homeostasis remains elusive. Because P-selectin-deficient (Selp-/-) mice displayed higher stress-induced GI injury compared to the wild-type (Selp+/+) mice, and P-selectin is specifically expressed in platelets, we hypothesize that P-selectin-expressing platelets play a protective role in the rescue of stress-induced GI injury. Our goal is to clarify the putative protective role of platelets in a GI system, thereby develop a feasible intervention strategy, such as platelet transfer, to overcome stress-induced GI injury. Through monitoring the plasma levels of GI-nonabsorbable Evans blue dye to reveal the progression course of GI injury in live mice, we found that intravenous treatments of purified platelets ameliorated stress-induced GI leakage. The transfer of platelets from wild-type mice was more potent than from Selp-/- mice in the rescue of stress-induced-GI leakage in the recipients. As such, platelet transfer-mediated rescue was conducted in a P-selectin dependent manner. Additionally, platelet-mediated protection is associated with corrections of stress-induced aberrant GI mRNA expressions, including tight junctions claudin 3 and occludin, as well as stress-induced genes activating transcription factor 3 and AMP-activated protein kinase, after the transfer of wild-type platelets into wild-type and Selp-/- mice. Furthermore, the stress-induced apoptosis of CD326+ GI epithelial cells was rescued by the transfer of wild type, but not P-selectin-deficient platelets. These results suggest that platelet plays a protective role for maintaining the GI homeostasis during stress in vivo, and that P-selectin is a molecular target for managing stress-induced GI tract injury.


Assuntos
Proteínas Quinases Ativadas por AMP , Fator 3 Ativador da Transcrição , Proteínas Quinases Ativadas por AMP/metabolismo , Fator 3 Ativador da Transcrição/metabolismo , Animais , Plaquetas/metabolismo , Claudina-3/metabolismo , Azul Evans , Camundongos , Camundongos Endogâmicos C57BL , Ocludina/metabolismo , RNA Mensageiro/metabolismo
19.
Sci Rep ; 12(1): 17440, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261482

RESUMO

Claudin-3 is a tight junction protein that has often been associated with the progression and metastasis of various tumors. Here, the role of claudin-3 in tumor-induced lymphangiogenesis is investigated. We found an increased lymphangiogenesis in the B16F10 tumor in claudin-3 knockout mice, accompanied by augmented melanoma cell metastasis into sentinel lymph nodes. In vitro, the overexpression of claudin-3 on lymphatic endothelial cells inhibited tube formation by suppressing cell migration, resulting in restricted lymphangiogenesis. Further experiments showed that claudin-3 inhibited lymphatic endothelial cell migration by regulating the PI3K signaling pathway. Interestingly, the expression of claudin-3 in lymphatic endothelial cells is down-regulated by vascular endothelial growth factor C that is often present in the tumor microenvironment. This study indicates that claudin-3 plays an important role as a signaling molecule in lymphatic endothelial cell activity associated with tumor lymphangiogenesis, which may further contribute to melanoma metastasis.


Assuntos
Claudina-3 , Vasos Linfáticos , Melanoma , Animais , Camundongos , Claudina-3/genética , Claudina-3/metabolismo , Células Endoteliais/metabolismo , Linfangiogênese , Metástase Linfática/patologia , Vasos Linfáticos/metabolismo , Melanoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Microambiente Tumoral , Fator C de Crescimento do Endotélio Vascular/metabolismo
20.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293400

RESUMO

Zearalenone (ZEN) is a widespread contaminant of cereals and agricultural products which causes food safety issues. Ingesting food or feed contaminated with ZEN can disrupt the intestinal epithelial barrier function. The RhoA/ROCK signaling pathway plays a key role in regulating the epithelial barrier function, but studies on such roles have rarely focused on the intestine. The aim of this experiment was to investigate the exact mechanism of ZEN-induced intestinal barrier damage and whether the RhoA/ROCK signaling pathway is involved. The results showed that ZEN significantly induced alkaline phosphatase (AP) activity and FITC-dextran (4 kDa) passage across the epithelial barrier, which significantly reduced the transepithelial resistance (TEER). Meanwhile, ZEN could induce the significantly down-regulated mRNA expression of tight junction proteins (occludin, claudin-1, ZO-1, and claudin-3) and redistribution of ZO-1 immunofluorescence. Further studies demonstrated that ZEN exposure activated the RhoA/ROCK signaling pathway, significantly up-regulated the mRNA expression of ROCK1, the main effector of the signaling pathway, the protein expression of phosphorylated myosin light chain (MLC) and myosin light chain kinase (MLCK), and relatively increased the activity of ATP in cells, simultaneously remodeling the cytoskeleton (F-actin). Overall, our study indicated that ZEN induced intestinal barrier dysfunction by activating the RhoA/ROCK signaling pathway.


Assuntos
Quinase de Cadeia Leve de Miosina , Zearalenona , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Cadeias Leves de Miosina/metabolismo , Zearalenona/metabolismo , Ocludina/metabolismo , Claudina-1/metabolismo , Actinas/metabolismo , Claudina-3/metabolismo , Fosfatase Alcalina/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Intestinos , Transdução de Sinais , RNA Mensageiro/metabolismo , Trifosfato de Adenosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...